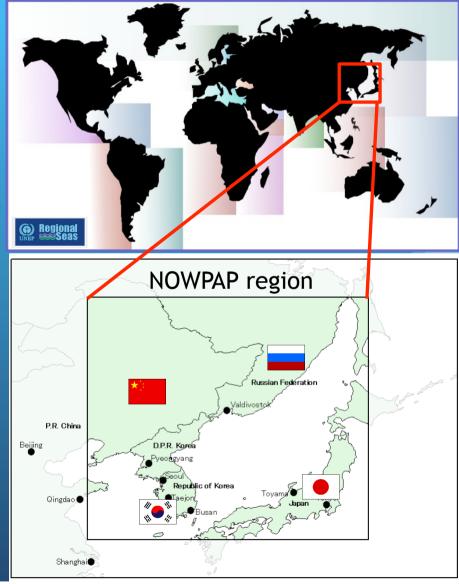
Assessment of eutrophication status in Toyama Bay based on the "Procedures for assessment of eutrophication status including evaluation of land based sources of nutrients for the NOWPAP region"

Genki Terauchi^{*1}, Ryo Tsujimoto^{*1} and Joji Ishizaka^{*2} 1. Northwest Pacific Environmental Cooperation Center 2. Nagoya University

The 2nd Yellow Sea Regional Science Conference in Xiamen, China, Feb 24-26, 2010

Outline

- 1. NOWPAP CEARAC and the Common Procedures for assessment of eutrophication
- 2. Preliminary assessment of eutrophication by remote sensing
- 3. Holistic assessment of eutrophication based on the Common Procedures
- 4. Potential areas of collaboration with YSLME


1. Regional Sea Program and NOWPAP

Regional Sea Program (RSP)

- Launched in 1974 by UNEP to address the accelerating degradation of the world's oceans and coastal areas.
- RSP covers 18 regions across the world today

NOWPAP

- Adopted in 1994
- China, Japan Korea and Russia
- Latitude 33 52^oN
- Longitude 121 143E

Mission of NOWPAP CEARAC

Mission

- Assessment of the state of the marine, coastal associated fresh water environment
- Development of tool for environmental assessment

Activities

- Harmful Algal Blooms
- Remote Sensing of Marine Environment
- Assessment of eutrophication
- Marine Litters
- Marine biodiversity

Development of procedures for holistic eutrophication assessment

Procedures for assessment of eutrophication status including evaluation of land-based sources for nutrients for the NOWPAP region (June, 2009)

Developed with experts of HAB and Ocean Remote sensing, referring to experiences in European countries such as HELCOM and OSPAR

Available on CEARAC Website at http://cearac.nowpap.org/

The Common Procedures

Procedures for assessment of eutrophication status including evaluation of land-based sources of nutrients for the NOWPAP region (Developed in June 2009)

-Contents-

. Intr	oduction1					
1-1.	Background1					
1-2.	Objectives of the Draft Procedures					
1-3.	Characteristics of the Draft Procedures					
1-4.	Overall structure					
. So	ope of assessment					
2-1.	Setting of assessment objective					
2-2.	Selection of assessment area4					
2-3.	Collection of relevant information					
2-4.	Selection of assessment parameters and data					
2-4	-1. Categorization of monitored/surveyed parameters					
2-4	-2. Selection of assessment parameters of each assessment category					
2-4	-3. Setting of assessment value					
2-4	4. Selection of monitoring/survey data for the assessment					
2-5.	Division of assessment area into sub-areas					
2-6.	Setting of assessment period7					
. Da	ta processing					
3-1.	Data processing method					
3-2.	Data screening7					
3-3.	Selection of monitoring/survey data for sub-area assessment					
3-4.	Data processing					
. Set	Setting of assessment criteria					
4-1.	Setting of criteria for selection of eutrophication identification tools					
4-2.	Setting of criteria for classifying the eutrophication status of assessment parameter					
4-3.	Setting of criteria for classifying the assessment category 11					
4-4.	Setting of criteria for classifying the assessment area/sub-area					
i. As	sessment process and results 11					
. Re	view of results					
. Co	Conclusion and recommendation					

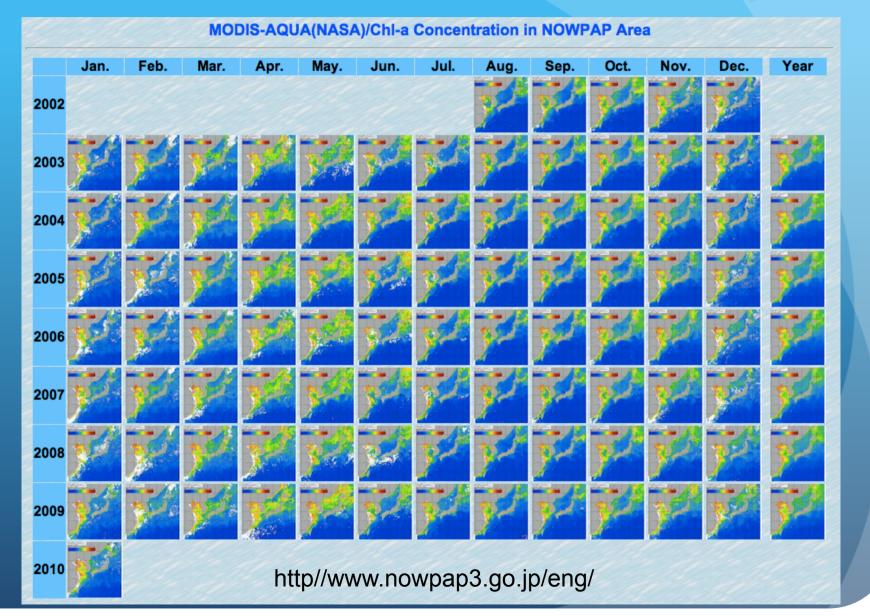
2. Preliminary assessment of eutrophication by remote sensing

Objective

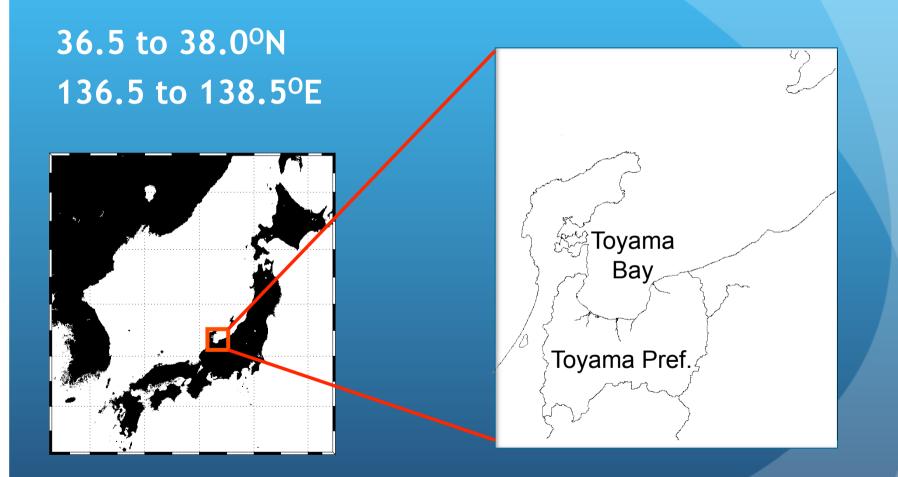
• To detect potential eutrophic area only with satellite derived Chlorophyll-a concentration (satellite Chl-a)

Preliminary Assessment for screening

Detection of potential eutrophic areas by satellite Chl-a

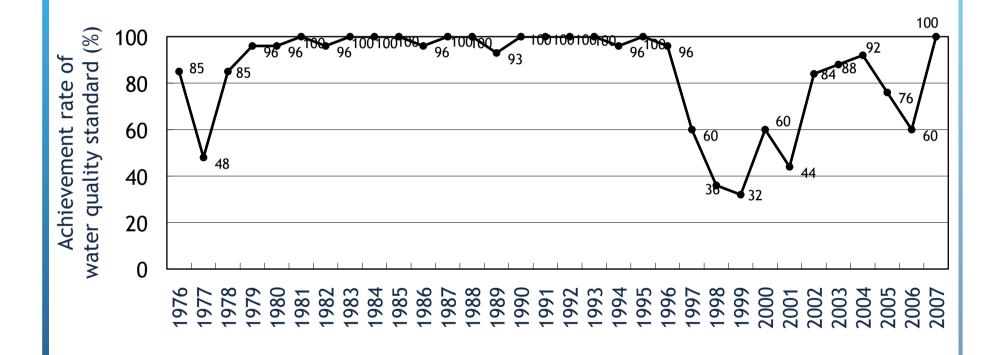

Holistic Assessment for finding drivers

Detailed assessment in the detected potential eutrophic areas with the Common Procedures


Ideas behind the preliminary assessment

Means of observation	Strength	Weaknesses	
Satellite Remote Sensing	•Wider area and higher temporal coverage	•Low accuracy in estimation of Chl-a in coastal area	
Preliminary Assessment for screening	 Free data access over the Internet Objectively detect relative change 	 No data obtained under cloud Data is available only at sea surface 	
Ship board measurement Holistic Assessment for finding drivers	 Obtain data under sea surface Can obtain actual measured value 	 Data represent only point of information Analysis of Chl-a need expertise Costly 	

Marine Environment Watch Project

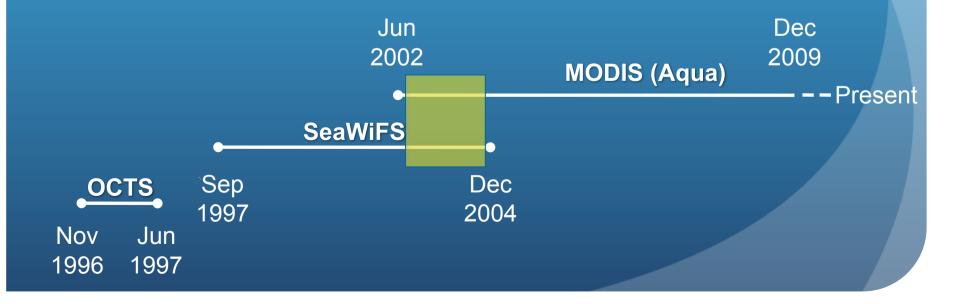


Location of study area

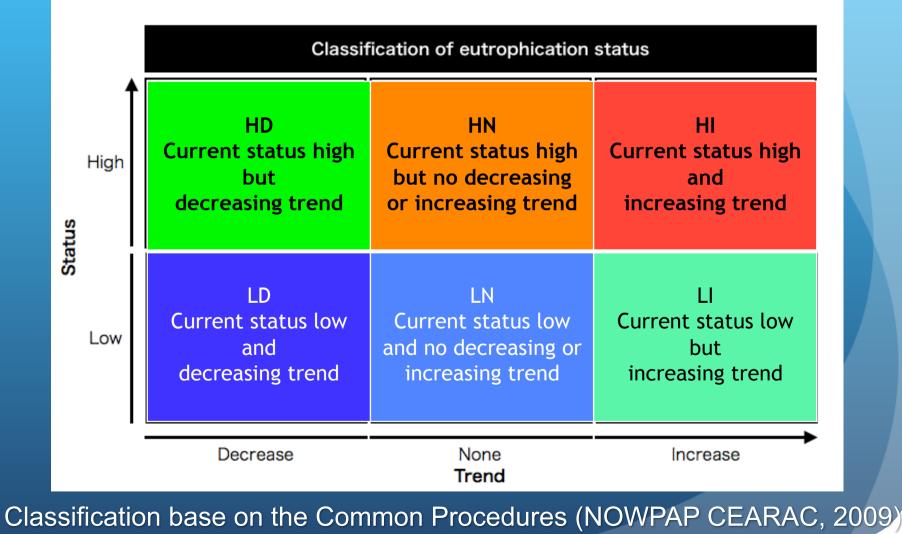
Water quality degradation in coastal area of Toyama Bay

Inter-annual change of water quality measured by COD in coastal area of Toyama Bay

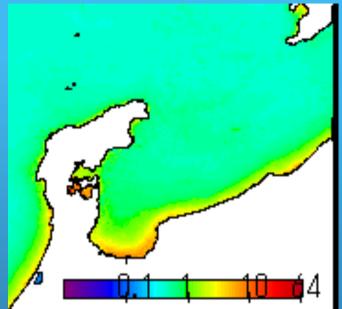
Data used for preliminary assessment


Sensor

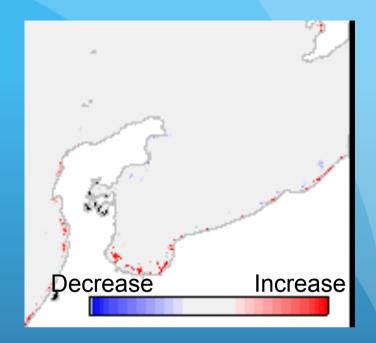
or NASDA (JAXA) OCTS on ADEOS NASA SeaWiFS on Orbview 2 NASA MODIS on Aqua


Algorithm NASA OC4 (standard algorithm)

Duration 13 Years from Jan 1997 to Dec 2009

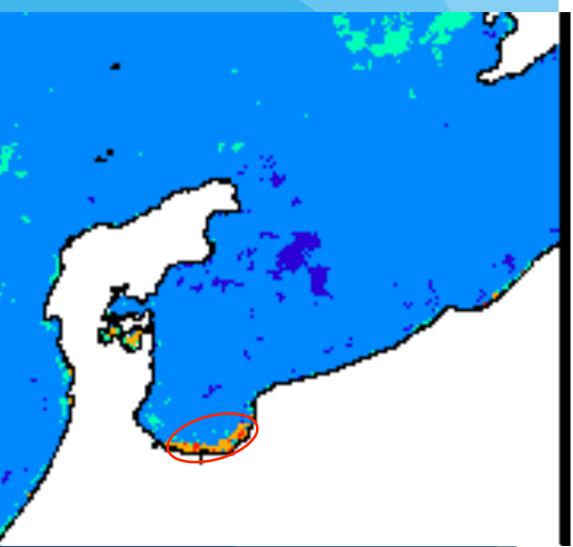

Data Monthly composite

Classification of Eutrophication Assessment



Methods

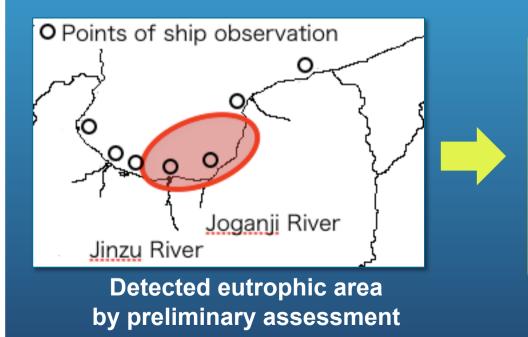
Overall mean for 13 years divided by $5\mu g L^{-1}$ based on Bricker *et al.* (2003)



Trend and its significance of annual Chl-a max in each pixel detected by Sen's slope test at 90% (Kahru, 2008)

Increase (red), Decrease (blue) and Non Trend (white)

Results of eutrophication classification


н	Severe eutrohic area -> Holistic assessment needed
HN	Eutrophic area -> Holistic assessment needed
HD	Potential eutrophic area -> Holistic assessment needed
LI	Potential eutrophic area -> Holistic assessment needed
LN	Non eutrophic area -> No Holistic assessment needed
LD	Non eutrophic area -> No Holistic assessment needed

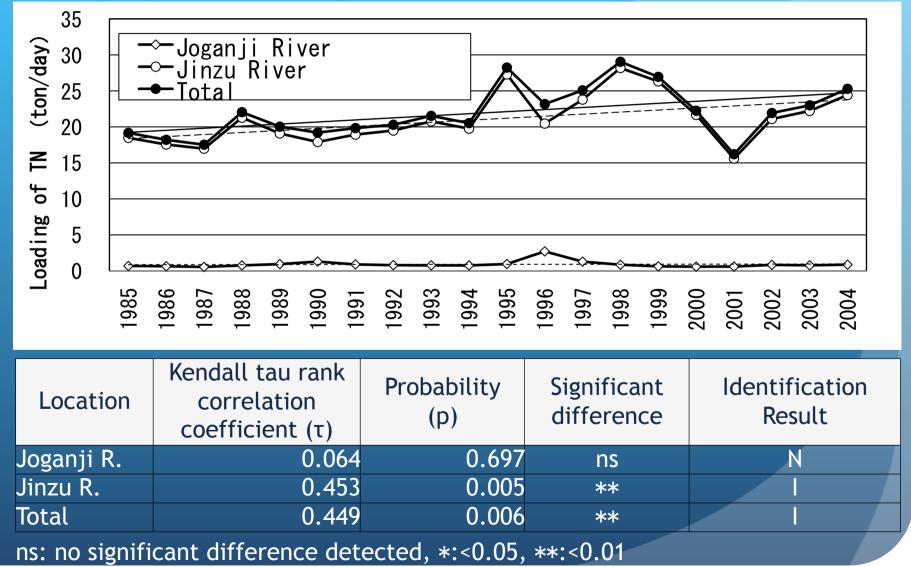
3. Holistic assessment in the detected potential eutrophic area

• Objectives

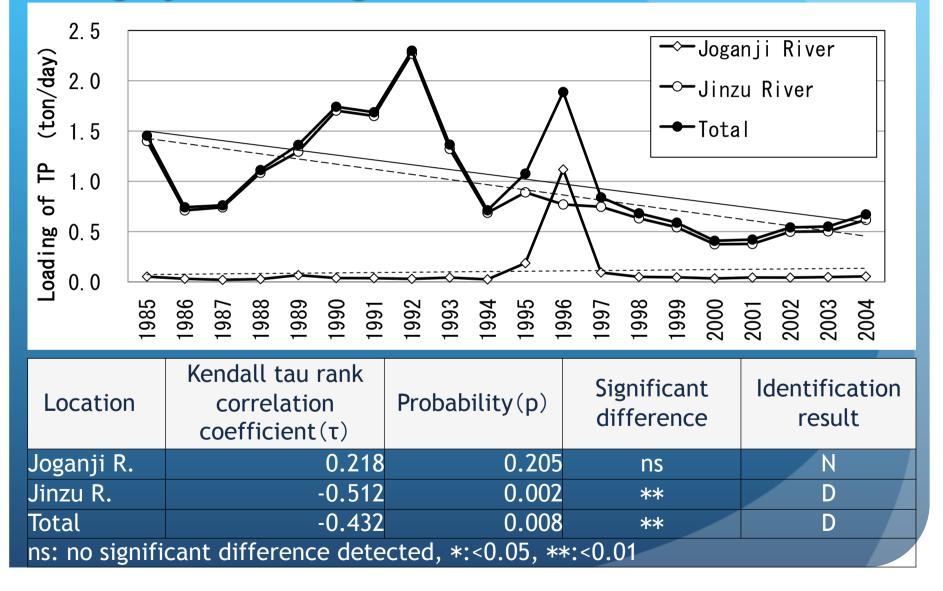
• To find out drivers of eutrophication in the detected potential eutrophic area with shipboard measured data

Holistic Assessment for finding drivers

Detailed assessment with the Common Procedures in the detected potential eutrophic areas by satellite Chl-a


Data used for secondary checkup

		Application of identification tools			
Category	Parameters	Status (Hi	Trend		
		Comparison	Occurrence	Irena	
l Degree of nutrient enrichment (NE)	Loading of TN and TP TN and TP Winter DIN and DIP Winter DIN/DIP ratio	- / / /			
II Direct effects of NE	Chl-a (field data) Chl-a (satellite) Red tide (diatom)	✓ ✓ -	- - \$	/ / /	
III Indirect effects of NE	DO Fish kill COD	- _			
IV Other possible effects of NE	Food poisoning Red tide (<i>Noctiluca</i> sp.)	-	,	<i>s</i>	


Criteria to indentify status

Category	Parameters	Status (High or Low)		
cutegory	rarameters	Comparison	Occurrence	
l Degree of nutrient enrichment (NE)	TN TP Winter DIN Winter DIP Winter DIN/DIP ratio	0.3 mg/L 0.03 mg/L 0.144 mg/L 0.017 mg/L 16		
II Direct effects of NE	Chl-a (for both field and satellite data) Red tide (diatom)	6μg/L (annual mean)/ 20μg/L (annual max) -	- - 1 occurrence	
III Indirect effects of NE	DO Fish kill COD	6.0 mg/L - 3.0 mg/L	- 1 occurrence -	
IV Other possible effects of NE	Food poisoning Red tide (<i>Noctiluca</i> sp.)	- -	1 occurrence 1 occurrence	

Criteria to indentify trend (I) Category I - Loading of TN

Criteria to indentify trend (II) Category I - Loading of TP

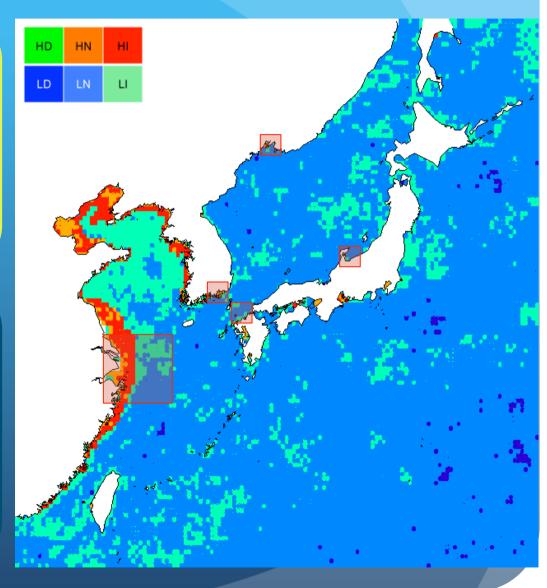
Results from secondary checkups

		Identification			Classification	
Category	Parameter	Status			by	by
Category	i didificici	Comparison	Occurrence	Trend	Parameter	by Category
1	Loading of TN	-	-	l.		
	Loading of TP	-	-	D	D	
	TN	L	-	None	LN	
	TP	L	-	None	LN	HI
	Winter DIN	Н	-	None	HN	
	Winter DIP	L	-	None	LN	
	Winter DIN/DIP ratio	-	-	None	N	
11	Annual max Chl-a (field)	L	-	None	LN	
	Annual mean Chl-a (field)	L	-	None	LN	
	Annual max Chl-a (satellite)	Н	-	None	HN	HN
	Annual mean Chl-a (satellite)	L	-	None	LN	
	Red tide (diatom)	-	None	D	LD	
Ш	DO	Н	-	D	LI	
	Fish kill	-	None	None	LN	LI
	COD	L	-		LI	
IV	Food poisoning	-	None	None	LN	LN
	Red tide (Noctiluca)	-	None	None	LN	

Summary

- 1. Preliminarily assessment by remote sensing was useful to detect potential eutrophic area
- 2. Holistic assessment of eutrophication based on the Common Procedures was useful to find drivers

Category	Classification results	Interpretation of results
l Degree of nutrient Enrichment (NE)	HI	Nitrogen was considered as a driver of eutrophication, because loading of TN was increased and winter DIN was also high
II Direct effects of NE	HN	Annual max of Chl-a over 20µg/L was recorded in satellite observation, and therefore routine observation is required
III Indirect effects of NE	LI	Continuous observation is necessary, because decrease of DO and increase of COD was found.
IV Other possible effects of NE	LN	Eutrophication is not yet proceeded in category IV, but continuous observation is necessary.


4. Potential collaboration with YSLME

Preliminary Assessment by remote sensing

•Refining of satellite Chl-a algorithm by YSLME Ocean Color project

Holistic Assessment by the Common Procedures

Addition of area for case study
Building bridge between policy makers and local communities

Thank you very much!